2018年12月,Alison L. Gould等人开发出了一种方法来绘制果蝇肠道中5种细菌之间所发生的可能的相互作用图谱,并发现针对果蝇寿命所发生的23%的变化而言,单一的微生物群落或许能够解释四分之一的影响,而微生物群落之间的相互作用或许能解释其余的影响[1]。这些相互作用或许能够影响某些因子,从而决定果蝇将其遗传物质遗传给后代的方式。
2018年11月,David Schnadower等人发现在患有急性胃肠炎的学龄前儿童中,相比接受安慰剂的患儿而言,接受5天疗程鼠李糖乳杆菌GG(LGG)益生菌疗法并不会给患儿带来更好的疗效[4]。与此同时,Stephen B. Freedman等人发现在因胃肠炎前往儿科急诊科的患儿中,每天两次鼠李糖乳杆菌R0011和瑞士乳杆菌R0052益生菌联合治疗并不能有效预防患儿中重度胃肠炎的发生[5]。这些结果表明在作为急性胃肠炎患儿的辅助治疗上,益生菌疗法或许完全无法改善患儿的疾病症状,这无疑给益生菌疗法画上了一个大大的问号。
2018年10月,Aimee M. Baumann-Dudenhoeffer等人发现所有婴儿配方奶粉的作用就是模拟母乳,但实际上其达不到这一点,就肠道细菌的种类而言,两种方式喂养的婴儿肠道中看似有着相同种类的肠道菌群,但其遗传潜能或许并不相同:很多婴儿配方奶粉含有能够模拟母乳中糖分的糖分子,这会促进一种更像母乳喂养的微生物菌群在婴儿肠道中建立,尤其是这些糖分子能够促进双歧杆菌的生长,而双歧杆菌是婴儿和儿童肠道中关键的微生物组组分;不同的是,大豆婴儿配方奶粉喂养的婴儿的肠道微生物组中含有少量的双歧杆菌,但却含有大量生产断链脂肪酸的菌群[6]。这似乎是一种不健康的肠道菌群的标志。
2018年10月,Andrew H. Moeller等人利用在两个地方捕获的17只小鼠产生了产生了11代小鼠,结果发现小鼠的肠道生物群落保持非常稳定---第11代小鼠的肠道生物群落几乎与第一代小鼠是一样的[8]。他们提出这是肠道生物群落细菌进行代代相传的证据,这是垂直传播(vertical transmission)的一个例子。
2018年5月,Christine A. Olson等人鉴定出在高脂肪低碳水化合物生酮饮食的抗癫痫作用中起着重要作用的两种特定肠道细菌:Akkermansia muciniphila和Parabacteroides[17]。这种生酮饮食会增加这两种肠道细菌的水平,从而增加大脑中的γ-氨基丁酸(GABA)的水平。
参考资料:
1. Alison L. Gould et al. Microbiome interactions shape host fitness, PNAS, 2018, doi:10.1073/pnas.1809349115.
2. Pajau Vangay et al. Immigration to the US changes a person's microbiome. Cell, 01 November 2018, 175(4):962-972, doi:10.1016/j.cell.2018.10.029.
3.Monica Bodogai et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Science Translational Medicine, 14 November 2018, 10(467):eaat4271, doi:10.1126/scitranslmed.aat4271.
4.David Schnadower et al. Lactobacillus rhamnosus GG versus Placebo for Acute Gastroenteritis in Children. N Engl J Med , 2018, 379:2002-2014, doi:10.1056/NEJMoa1802598.
5.Stephen B. Freedman et al. Multicenter Trial of a Combination Probiotic for Children with Gastroenteritis. N Engl J Med, 2018, 379:2015-2026, doi:10.1056/NEJMoa1802597.
6. Aimee M. Baumann-Dudenhoeffer et al. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nature Medicine (2018) doi:10.1038/s41591-018-0216-2.
7. Christopher J. Stewart et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature, Published Online: 24 October 2018, doi:10.1038/s41586-018-0617-x.
8. Andrew H. Moeller et al. Transmission modes of the mammalian gut microbiota. Science, 26 October 2018, 362(6413):453-457, doi:10.1126/science.aat7164.
9.Ara Koh et al. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell, Published Online: 25 October 2018, doi:10.1016/j.cell.2018.09.055.
10.Niv Zmora et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell, 2018; 174 (6): 1388 DOI: 10.1016/j.cell.2018.08.041.
11.Jotham Suez et al. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell, 2018; 174 (6): 1406 DOI: 10.1016/j.cell.2018.08.047.
12.Marcus Fulde et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature, Published online: 08 August 2018, doi:10.1038/s41586-018-0395-5.
13. Vanessa C. Harri et al. Effect of Antibiotic-Mediated Microbiome Modulation on Rotavirus Vaccine Immunogenicity: A Human, Randomized-Control Proof-of-Concept Trial. Cell Host & Microbe (2018), doi:10.1016/j.chom.2018.07.005.
14. Carolina Tropini et al. Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota. Cell, 14 June 2018, 173(7):1742–1754, doi:10.1016/j.cell.2018.05.008.
15.Ning Mao et al. Probiotic strains detect and suppress cholera in mice. Science Translational Medicine, 13 Jun 2018, 10(445):eaao2586, doi:10.1126/scitranslmed.aao2586.
16. Chi Ma et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 25 May 2018, 360(6391):eaan5931, doi:10.1126/science.aan5931.
17.Christine A. Olson et al. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell, Published online:May 24, 2018, doi:10.1016/j.cell.2018.04.027.
18.Veit Rothhammer et al. Microglial control of astrocytes in response to microbial metabolites. Nature, Published online:16 May 2018, doi:10.1038/s41586-018-0119-x.
19.Marlies Meisel et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature, Published online:16 May 2018, doi:10.1038/s41586-018-0125-z.
20. Liping Zhao et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 09 Mar 2018, 359(6380):1151-1156, doi:10.1126/science.aao5774.
21.Daphna Rothschild et al. Environment dominates over host genetics in shaping human gut microbiota. Nature, Published online: 28 February 2018, doi:10.1038/nature25973.
22.Christine M. Dejea et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science, 02 Feb 2018, 359(6375): 592-597, doi:10.1126/science.aah3648.
23. Wenhan Zhu et al. Precision editing of the gut microbiota ameliorates colitis. Nature, Published online: 03 January 2018, doi:10.1038/nature25172.
24. Vyara Matson et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science, 05 Jan 2018, 359(6371):104-108, doi:10.1126/science.aao3290.
25. Bertrand Routy, Emmanuelle Le Chatelier, Lisa Derosa et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, Published online: 02 Nov 2017, doi:10.1126/science.aan3706.
26. V. Gopalakrishnan, C. N. Spencer, L. Nezi et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, Published online: 02 Nov 2017, doi:10.1126/science.aan4236.