|
楼主 |
发表于 2019-11-10 11:00:28
|
显示全部楼层
本帖最后由 邓文龙 于 2019-11-10 11:13 编辑
4.2 面临的挑战
但是,要从简单的有机体转化到人类,需要克服以下几个关键难题。首先,针对模式生物的研究已很清楚地表明在给定的遗传环境中有益的干预措施可能不会在另一种环境中起作用。比如,对多种重组近交小鼠品系的饮食限制的分析发现寿命的增加和减少都取决于小鼠品系。利用150多种果蝇品系开展的研究也获得了相似的结果。这些差异对被认为是对普遍有益的干预措施作出的反应,但是它们的分子基础尚未确定。对酵母、线虫和果蝇等无脊椎动物的进一步研究有望通过饮食限制系统地解释寿命延长的遗传基础。
人类群体的特征还在于其巨大的遗传异质性,这种异质性在疾病易感性、寿命和个体药物反应中起着至关重要的作用。这种异质性是当前精准医疗领域的基础,这个领域旨在确定疾病的关键遗传决定因素,并针对独特的遗传变异定制干预和治疗。将来,精准医疗和老年科学领域将会密切互动。FOXO3与DAF-胰岛素途径有关,并且在世界各地的百岁老人中发现了FOXO3的独特多态性。此外,APOE基因参与胆固醇代谢,它的独特等位基因与寿命和较低的阿尔茨海默病风险相关。如今已知许多其他基因,比如SIRT6,与人类寿命有关。
正如多项动物研究对饮食限制的益处的普遍性提出挑战一样,由于人群中自然遗传变异的影响,药物干预可能会在不同人中取得不同的成功。正如在小鼠中一样,不同的人群对营养有效性反应的选择性压力可能不同,从而导致可能影响糖尿病和肥胖的遗传差异。此外,大多数干预措施都源于表明它们可以防止动物衰老的研究。因此,对营养进行优化和参加锻炼的人可能不太可能从这些干预措施中获得很多益处。未来基于个性化医疗定制干预措施的研究最有可能会从这些干预措施中获得最大益处。
此外,很明显,对小鼠的研究并不总是对人类具有预测性。小鼠中的许多重要发现已在人类中进行转化,但也有很多重要发现却不会如此。这可能是由于小鼠和人类之间的内在生物学差异。此外,生物学的复杂性以及影响生物学表型的已识别的和无法识别的变量的多样性导致了研究相同有机体的不同实验室之间出现可重复性问题,这不仅在小鼠研究中如此,在其他模式生物的研究中也是如此。
尽管有很多例子表明较长寿命和健康寿命增加之间存在关联性,但是近期针对小鼠、果蝇和线虫的研究对以下假设提出了质疑:寿命的延长总是伴随着健康寿命的增加。在尝试将这些干预措施转化为人类患者的治疗之前,未来的研究将需要解决它们在这两个方面的影响。
4.3 正在进行临床试验的药物
两种正在开发中的靶向衰老的药物和一些常用的药物在动物模型中均起着防衰老剂(geroprotector)的作用。由美国国家老龄研究所(National Institute of Ageing)支持的多中心干预测试计划(Intervention Testing Program, ITP)已确定了五种可重现地增加遗传异质性小鼠寿命的药物,包括雷帕霉素、阿卡波糖、去甲二氢愈创木酸、17-α-雌二醇和阿司匹林。这些药物中的某些还改善了动物模型的某些组织中的健康寿命指标。在其他研究中发现可延长啮齿类动物寿命的药物包括二甲双胍(尽管相同剂量的二甲双胍在ITP的实验中并未重现)、靶向血管紧张素转化酶和醛固酮受体的药物以及sirtuin活化剂SRT2104和SRT1720。需要开展进一步的研究来验证这些药物在模式生物中是否能起到真正的防衰老剂作用。
一个关键问题是如何对这些干预措施进行测试,并最终在人体中临床使用。老年科学预测,抗衰老疗法将同时改善或预防多种年龄相关性疾病和症状。因此,检验这一假设的临床试验应使用本质上取决于多种年龄相关性疾病或症状的临床结果。这样的例子包括多重病症,即几种年龄相关性慢性疾病的组合;多因素老年综合症,如衰弱或谵妄;对诸如手术或感染之类的健康应激因素的适应力。多重病症和衰弱也被广泛纳入与年龄相关的风险测量中,从而为临床决策提供依据。其他可能有用的临床试验测量指标包括握力、步态速度、定时起立-行走和日常生活活动。
这些衰老的临床测量指标可能有助于选择年龄相关风险较高的患者接受干预。比如,随着年龄的增加,多重病症的风险急剧增加。但是,患上一种慢性疾病会使得患上另一种慢性疾病的风险增加几倍。尽管针对动物的药物研究和针对人类的锻炼研究让人们相信,机会之窗一直会延伸到生命的晚期,但对衰老过程的干预到底能在多大程度上有效仍有待观察。目前正在人体中测试至少五种主要类型的药物的潜在抗衰老作用。
(1)二甲双胍
二甲双胍是一种广泛使用的抗糖尿病药物,已发现它靶向多种衰老分子机制。对接受二甲双胍治疗的糖尿病患者的回顾性分析显示,与未患糖尿病的患者相比,二甲双胍可延长糖尿病患者的寿命。在随机化临床试验中,二甲双胍预防了糖尿病的发生,改善了心血管危险因素,降低了死亡率。流行病学研究表明,二甲双胍的使用也可能降低癌症和神经退行性疾病的发病率。
(2)雷帕霉素类似物
ITP鉴定出的可能对寿命影响最大的化合物是雷帕霉素。雷帕霉素抑制TOR途径,延长酵母和果蝇的寿命,增加具有多种遗传背景的小鼠的平均寿命和最大寿命。
雷帕霉素---也称为西罗莫司(sirolimus)---及其类似物依维莫司(everolimus)被批准在临床上作为免疫抑制剂用于实体器官移植。健康的老年人给予非免疫抑制剂量的依维莫司六周后,对流感疫苗的免疫反应有所改善。随后的一项临床试验发现六周的低剂量依维莫司加第二种TOR抑制剂改善了疫苗反应,并在随后的9个月里使感染率降低了三分之一以上。这是利用靶向衰老机制的药物开展针对衰老综合症的首批临床试验的两个例子。
(3)senolytics
如上所述,选择性地消除衰老细胞的药物在动物模型中具有巨大的抗衰老潜力。这些药物中有些是天然产物,而另一些是合成小分子。越来越多的生物技术公司和研究实验室正在开发新的或改变用途的senolytics,它们刚刚开始在人体中进行安全性测试,到目前为止,还没有关于功效的结果。
(4)sirtuin活化剂
sirtuin活化化合物(sirtuin-activating compound, STAC, 也称为sirtuin活化剂)增强sirtuin活性并增加小鼠和非人类灵长类动物的健康寿命。然而,在临床试验中已经观察到混乱的结论。白藜芦醇(一种天然的STAC)和SRT1720(一种在早期合成的STAC)在临床前试验中显示出令人鼓舞的结果,但是由于较低的生物利用度和效力以及有限的靶标特异性而在临床试验中遭遇失败。迄今为止,最有前景的合成STAC是SRT2104,这是一种高度特异性的SIRT1活化剂;这种化合物已完成了几项关于心血管和代谢标志物影响的小型临床研究,并正在进行较大的临床试验。
(5)NAD+前体
诸如烟酰胺核糖和烟酰胺单核苷酸之类的NAD+前体旨在补充与年龄相关的细胞NAD水平下降。在动物模型中,这种两种前体均显示出抵抗多种衰老相关疾病的活性。目前有几家公司在线销售烟酰胺核糖和烟酰胺单核苷酸。尽管这些补充剂会增加人体内NAD的水平,但迄今为止尚未证实它们对人体有功效或抗衰老作用。
4.4 锻炼可改善健康寿命
尽管目前人们对药物开发抱有很大的希望和进行投资,但重要的是要注意锻炼是一种真正有效的防衰老剂。在缺乏适合的针对年龄相关性功能障碍的治疗方法的情况下,锻炼是目前唯一显示出显著功效的干预措施,可降低年龄相关性疾病的发生率,改善生活质量,甚至增加人体的平均寿命和最大寿命。即使适度实施,也可以看到它的好处。尽管尚不清楚介导锻炼对年龄相关性疾病的保护作用的关键分子参与者,但是仍在努力确定这些分子参与者以及我们是否可以利用这些知识来改善老龄化人群的健康。
4.5 营养与衰老
饮食可能是对健康和衰老最重要的影响之一。但是,这是一个极其复杂的话题,超出了本文的范围。衰老领域几乎完全集中在饮食限制对寿命和健康寿命的影响上,但是另一方面,暴饮暴食和随之而来的肥胖会缩短寿命并降低健康寿命。在这两个极端之间,有充分的证据表明,最佳饮食与预期寿命的增加和所有慢性疾病风险的降低有关。许多人声称不同饮食之间的竞争优势。但是,利用无偏见和没有混淆变量的方法进行严格的长期研究以比较不同饮食对寿命和健康寿命的影响是非常困难的。没有这种直接的比较,就不能声称任何一种特定的饮食比其他饮食更好。但是,然而,从比较不同饮食的研究和对地理上与长寿有关的人群的研究中出现了一些新的课题。有利于长寿和健康寿命的饮食通常以少加工食品为特征,主要是植物性饮食、低酒精摄入和不暴饮暴食。
营养领域出现了令人振奋的新进展,比如间歇性禁食、禁食模拟饮食和限时进食。近期,对生酮饮食的兴趣增加,这种饮食的特征在于产生高水平的内源性酮体β-羟基丁酸(β-hydroxybutyrate)。长期以来,这种饮食一直被用作治疗儿童癫痫的方法,最近两项针对小鼠的独立研究显示,它可以增加健康寿命。这两项研究得到了近期发现的支持,即β-羟基丁酸调控表观遗传调节剂和组蛋白脱乙酰基酶的酶促活性,从而促进FOXO3表达。未来的研究将关注这些饮食干预措施对健康寿命和寿命的影响,以及对它们与调节衰老的途径之间相互作用的鉴定。
4.6 对衰老生物标志物的需求
老年科学领域需要生物标志物来评估衰老过程和干预措施的有效性,以避开大规模纵向研究的需要。在过去的40年中,医学经历了一个渐进的转变,从最初的以疾病发生后的治疗为主的疾病照料(sick care)转变为确定疾病进展的独特风险因素并在疾病发作之间加以抑制的医疗保健(healthcare)。比如,高血浆胆固醇和高血压本身都不是疾病,但是这两者都是心肌梗死和中风发生的重要危险因素。
同样,衰老不是疾病,而是包括心肌梗塞、中风、一些衰老相关性癌症、黄斑变性、骨关节炎、神经变性和许多其他疾病在内的多种疾病的明显危险因素。比如,即使在调整了其他危险因素后,在40岁以后每10年心血管疾病的风险就会翻番---大致相当于每十年增加一种主要的新危险因素(吸烟和高血压等)。数十年的心血管研究可鉴定危险因素,并表明即使在患者未出现症状的情况下,对这些风险因素进行处理就可防止伤害。如今,在这些心血管生物标志物的指导下,治疗的时间越来越早。真正的衰老生物标志物的可获得性、相关的临床健康结果以及干预措施的可塑性,将可以在更快的时间范围内测试防衰老剂。它们将进一步允许在一生中以及在各种临床情况下较早地识别处于较高年龄相关风险的患者,以便针对性地进行抗衰老治疗。
早期鉴定此类标记物的努力并未成功,但最近使用高通量蛋白质组学、转录组学和表观基因组学等新技术取得的进展表明它们确实存在并且可能具有很高的临床重要性。一种潜在的生物标志物---表观遗传钟(epigenetic clock)---是基于对多个位点的DNA甲基化的测量,并且相比于实足年龄(即实际年龄),它似乎与生物学年龄(即生理年龄)和年龄相关风险更相关。晚期糖基化终产物代表了在年龄的增加中以及在几种年龄相关性疾病中积累的另一种潜在的生物标志物。此外,某些晚期糖基化终产物水平的增加也与人类死亡率的增加相关。已经有证据表明,可以通过靶向衰老的干预措施来修改衰老生物标志物。鉴定可预测生物学年龄和疾病风险的其他生物标志物将代表人类在与年龄相关性疾病和功能障碍的斗争中取得巨大进步。
我们如今正进入一个令人兴奋的衰老研究时代。这个时代为人类健康寿命的增加带来了空前的希望:根据新的科学发现,有可能预防、延缓或在某些情况下逆转许多衰老病变。这个时代是否有望增加人类的最大寿命仍然是一个悬而未决的问题。显而易见的是,在将独特基因与衰老关联在一起的基础发现之后的30年,人们已经建立了坚实的基础,并开始了直接靶向衰老过程的临床试验。尽管在将这些研究转移到人体时可以预见会碰到很大的困难,但是健康衰老带来的潜在益处远远超过了风险。(生物谷 Bioon.com)
参考文献:
1.Judith Campisi et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature, 2019, doi:10.1038/s41586-019-1365-2.
https://www.nature.com/articles/s41586-019-1365-2
http://news.bioon.com/article/6746382.html
华成旅行社 欢迎来电咨询:
电话:03-3833-9823 / 03-5688-1863
FAX :03-3833-9873 / 03-3834-5891
SOFTBANK电话:080-3416-2275 担当:小郭 微信号:08034162275
SOFTBANK电话:090-2172-4325 担当:小于 微信号:TYOSCL4325
SOFTBANK电话:080-3398-4387 担当:小李 微信号:huacheng4387
SOFTBANK电话:080-3523-4388 担当:小何 微信号:huacheng602
SOFTBANK电话:080-3084-4389 担当:小马 微信号:huacheng858
http://www.kaseisyoji.com/forum.php?mod=forumdisplay&fid=10
|
|